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Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic

disease. A wide array of conditions may affect color vision, ranging from diseases of the

ocular media through to pathology of the visual cortex. Traditionally, acquired color vision

deficiency is considered a separate entity from congenital color vision deficiency, although

emerging clinical and molecular genetic data would suggest a degree of overlap. We review

the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories

for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of

color vision. We also briefly review the types of color vision deficiencies encountered in

ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

ª 2016 Elsevier Inc. All rights reserved.
1. Introduction deficiencies form 2 distinct entities.66 Congenital color vision
Color vision deficiency secondary to ocular or visual pathway

diseasedknown as acquired color vision deficiencydwas

perhaps the first recorded form of dyschromatopsia.86 The

English oculist, Dawbeney Turbervile, described a case of

probable cerebral achromatopsia in a letter to the Royal So-

ciety published in 1684.207 A similardand most probably the

samedcase was elucidated by the natural philosopher, Robert

Boyle, in his treatise Uncommon observations about vitiated

sight22 in 1688. Although these reports postdate by several

centuries Albertus Magnus’ description of a patient with

probable cone dystrophy, the latter’s report makes reference

only to hemeralopia.202 The traditional classification of color

vision deficiency suggests that congenital and acquired
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deficiency is said to be present from birth, stable, bilaterally

symmetrical, and is thought to affect the entire field of vision.

Acquired color vision deficiency, by contrast, may demon-

strate progression or regression, may affect one eye or both

eyes asymmetrically, and may affect only a portion of the vi-

sual field. In contrast to congenital color vision deficiency,

acquired color vision deficiency is believed to be highly

symptomatic.66 Although acquired color vision deficiency

may have a higher overall prevalence than congenital color

vision deficiency,43 there are limited data. With improved

understanding of both the etiology of congenital color vision

deficiency and of other congenital cone photoreceptor disor-

ders, a degree of overlap is evident.184 Acquired color vision

deficiency may be classified by the site of pathology or by its
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clinical characteristics. Although congenital color vision

deficiency has a predilection for affecting an individual cone

classdand thereby a single subsystem of color visiondsuch

characteristics are far less frequently encountered in acquired

color vision deficiency.184
2. The substrate of color vision

2.1. Receptoral

Normal human color vision is trichromatic127; that is, any

color can be matched by a mixture of 3 judiciously selected

primary colors (provided that their wavelengthmay be varied

or that color subtraction is permitted). The physiologic sub-

strate of trichromatic color vision is the cone photoreceptor,

of which there are 3 classes: the short- (S-), medium- (M-),

and long- (L-) wavelength sensitive cones. The different

classes of cone have overlapping, but distinct, spectral sen-

sitivities (see Fig. 1). The peak sensitivities lie at about

419 nm, 531 nm, and at 558 nm for the S-, M-, and L-cones (see

Fig. 1).21 Under certain testing conditions25dand in certain

pathologic states161drods may influence, or participate in,

the perception or discrimination of color. The response of

any individual photoreceptor is unidimensional and cannot

alone convey unambiguous information about the spectral

nature of incident light (the so-called principal of univariance).

Color vision is derived from a comparison of the rates of

quantum catches signaled from the different classes of cone.

The S-cones are absent from the foveola, comprise approxi-

mately 7%e10% of the cone photoreceptor population based

on histologic observation,2 and form 5.7 � 0.7% (mean �
standard deviation) of the photoreceptor mosaic imaged

in vivo about 1� from fixation.72 The M- and L-cones share

many similarities in terms of their known histology, physi-

ology, and molecular genetics. These cone types comprise

the remainder of the cone population, though considerable

variability in the L-cone:M-cone ratio occurs among those

with normal vision. Adaptive optics imaging suggests a range
Fig. 1 e The spectral sensitivities of the 3 classes of cone

photoreceptor (S-cones, blue inverted triangles;M-cones, green

triangles; L-cones, red circles) and of the rods (black squares)

plotted against wavelength in nm. (For interpretation of the

references to color in this figure legend, the reader is

referred to the Web version of this article.)
inmales from 1.1:1 to 16:1 (withmore extreme ratios favoring

M-cones occurring in female carriers of protanopia).72 The

spectral sensitivity of the photopigments is determined by

the protein portion or “opsin.” Opsins are heptahelical pro-

teins that are bound to 11-cis-retinal and are members of the

G-protein coupled superfamily of receptor molecules. The M-

and L-cone photopigments are coded in an array on the X-

chromosome and share a 96% similarity with each other in

terms of primary structure, whereas the S-cone photopig-

ment is coded on chromosome 7 and shares 43% identity with

the M- and L-cone photopigments.141

2.2. Postreceptoral

There is evidence to suggest that the processing of spectral

information from the visual scene is conducted via 2 sub-

systems of color vision that are phylogenetically distinct.128

The first, and more ancient, system compares quantum

catches in the S-cones to the M- and L-cones. The second,

more recent, subsystem is thought to have partially com-

mandeered a system initially specialized for spatial resolu-

tion. This is an important point in the context of acquired

color vision deficiency as it has ramifications on the antici-

pated concomitant clinical features.

The S-cones synapse with S-cone bipolar cells and then

with at least 4 different types of ganglion cell.193 The most

extensively studied of these is the small bistratified ganglion

cell which receives “on” excitatory input from S-cone “on”

bipolar cells with the “off” input derived from the M- and L-

cones via diffuse “off” bipolar cells.107 The details of the

remaining ganglion cell types subserving the S-cones are yet

to be fully elucidated, though at least one of these cell types

receives an inhibitory S-cone input107 (The existence of such

inputs has been a matter of some controversy).55 Ganglion

cell axons subserving the S-cone system synapse in the

intercalated layers of the lateral geniculate nucleus71 and

input into the lower echelons of layer 3 and 4A of the visual

cortex.193

Spectral information from the M- and L-cones is carried by

the midget ganglion cells. The center of the receptive field of

the midget cellsdat least in the central retinadis drawn from

a single cone (via a singlemidget bipolar cell) and the surround

from multiple cones, though there exists some controversy

regarding the nature of such inputs (i.e., whether the surround

is drawn from cones of a different class or indiscriminately

from both).193 The midget cells synapse in the parvocellular

layers of the lateral geniculate nucleus (3, 4, 5, and 6) which in

turn project to layer 4Cb of the visual cortex.193

Like the responses from individual photoreceptor cells, the

response from individual ganglion cells is unidimensional and

does not alone convey an unambiguous signal regarding the

spectral nature of a stimulus: this is in effect an extension of

the principle of univariance. As a consequence, the spatial

resolution of color vision is necessarily inferior to that for

luminance discrimination.55 For small targets, color vision is

tritanopic.131 Although there are fewer reliable data regarding

the point discrimination acuity of the M/L-subsystem, other

measures suggest that its resolution is superior to the S-cone

system,30,57 although the magnitude of this superiority is

again a matter of conjecture.120
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3. Abnormal color vision

Disorders of color vision are traditionally classified into

congenital and acquired forms. Acquired color vision defi-

ciency has received far less attention than congenital color

vision deficiency, which is known to affect as many as 8% of

males and 0.5% of females182,184 (with considerable variation

among populations).16

Congenital color vision deficiency arises from disorders in

the genes coding for the cone photopigments,142,221,222 in genes

controlling the expression of the cone photopigments,140,208,217

in genes coding proteins involved in the phototransduction

cascade (cone guanylate cyclase, GNAT23,95 and cone phos-

phodiesterase [PDE] subunits, PDE6C31/PDE6H96) or from genes

coding for the a- or b-subunits of the cone cyclic guanosine

monophosphateegated cation channels.94,97 Congenital color

visiondeficiency issubclassifiedby theseverityof thedefectand

the class(es) of cone affected. Anomalous trichromats display

trichromatic color vision; however, they will accept color

matches that a normal will not. Often, though not always, the

converse is also true. Dichromats are able to match any other

color using 2 carefully selected primary colors. Finally, mono-

chromats can match any color by adjusting the brightness of a

single primary. Under some circumstances, monochromats

may display residual color discrimination either through cone-

cone interactions in residual or surviving cones or via cone-rod

interactions.160 The various forms of congenital color vision

deficiency are summarized inTable 1, and the reader is directed

to recent reviews for further information on these conditions

and their current and possible future management.144,184

Although acquired color vision deficiency occurs secondary

to ocular or visual pathway disease, it is important to note that

the causative disease may be hereditary. Just as molecular ge-

netics has divided what clinicians unite, the converse also

holds. The causative genes in several forms of congenital color

vision deficiency have been implicated in several retinal dys-

trophy phenotypes. Because of the early processing of color

vision in different subsystems, combined with the limited

repertoire of responses to pathology, ocular disease tends to

cause stereotypical alterations to color vision that lend
Table 1 e Summary of congenital color vision deficiency

Deficiency Cone(s) a

Anomalous trichromacy

Protanomaly L-cones

Deuteranomaly M-cones

Incomplete tritanopia (syn. tritanomaly) S-cones

Dichromacy

Protanopia L-cones

Deuteranopia M-cones

Tritanopia S-cones

Monochromacy

M-cone monochromacy L- and S-co

L-cone monochromacy M- and S-c

S-cone monochromacy M- and L-c

Rod monochromacy and incomplete achromatopsia S-, M-, and
themselves to classification.85 There are, however, notable ex-

ceptions (e.g., color vision deficiency associated with pathology

of the visual centers).90 Acquired color vision deficiencymay be

classified by its mechanism or primary site of pathology or by

the type of color vision deficiency encountered.

In a recent review of the epidemiology of color vision defi-

ciency, it was suggested that acquired forms affect between 5%

and 15% of the population, but this claim appears to be based

primarily on level IV evidence (i.e., expert opinion) rather than

on large surveys.43 The limited evidence from 2 subsequently

published epidemiologic studies in part confirms this claim.

One study from Iran using the Farnsworth-Munsell (F-M) D-15

in a population of 5,102 adults aged 40e64 years old suggests a

prevalence of 10.1% in those surveyed, though the precise

criteria for diagnosis were unclear.81 Of those diagnosed with

acquired color vision deficiency, 66.1% had an acquired tritan

deficiency (hereafter referred to as S-mechanism deficiency)

while the remainder had acquired red-green deficiency (here-

after referred to as M-L mechanism deficiency). Another

smaller North American study178 using the D-15 and desatu-

rated D-15 in an older population of 865 patients aged from 58

to 102 years (mean, 75.2 years) found an overall prevalence of

20.8% (using a previously describedmethod of scoring215 as the

criterion for failure). Of those who failed the F-M D-15, 75.6%

had an acquired S-mechanism deficiency, with the remainder

having either acquired M-L mechanism deficiency or nonspe-

cific loss. The prevalence of acquired color vision deficiency

within populationswould be anticipated to be influencedby the

population tree (older subjects are more likely to have acquired

color vision deficiency) and by the means of detection (e.g.,

studies using the standard F-M D-15 alone would be predicted

to underestimate the prevalence of color vision deficiency).
3.1. Classification of acquired color vision deficiency

3.1.1. von Kries
In 1897, vonKries described 3 abnormalities of colormatching,

all of which may occur in acquired color vision deficiency.159

1. Increasedmatching range (i.e., reducedcolordiscrimination)
ffected Inheritance Prevalence

XLR 1.1%182

XLR 4.6%182

AD See tritanopia

XLR 1.0%182

XLR 1.3%182

AD 1 in 500223

nes Combined XLR and AD �1 in 1,000,000182

ones Combined XLR and AD �1 in 1,000,000182

ones XLR 1 in 100,000182

L-cones AR 1 in 33,000 to 50,00086
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2. A shifted match caused by an absorption system (i.e., pre-

receptoral spectral modification)

3. A shiftedmatch caused by an alteration system (i.e., altered

sensitivity of the photopigments, either in peak sensitivity

or spectral profile).

von Kries’ elegant observations can still be used today to

form the framework for the taxonomy of acquired color vision

deficiency or to explore the mechanism of a particular ac-

quired color deficiency.159

3.1.2. Köllner
More commonly, however, acquired color vision deficiencies

are classified according to the subsystem of color perception

chiefly affected. In his exhaustive study of color vision defi-

ciency in ocular and visual pathway pathology, Köllner indi-

rectly spawned the rule which today bears his name.99 This

“rule” states that retinal disease most commonly results in

blue-yellow (i.e., S-mechanism) color vision deficiency while

optic nerve disease most commonly results in red-green (i.e.,

M-Lmechanism) deficiency. The clinical utility of this “rule” is

questionable, as there are multiple exceptions; dominant

optic atrophy, for example, may produce S-mechanism defi-

ciency101 (though this is often not the case)188 and numerous

retinal diseases may cause M-L mechanism deficiency.187

3.1.3. Verriest
The most widely used classification of acquired color vision

deficiency is that of Verriest212: his classification scheme was

based on a retrospective analysis of a series of 544 eyes of 476

patients examined with a battery of color vision tests. The

latter consisted of both tests of discrimination (Hardy Rand

Rittler Plates, F-M D-15 and F-M 100-Hue) as well as tests of

matching (Rayleigh equation). He classified acquired color

vision deficiency as follows:

1. Type I acquired color vision deficiency is an M-L mecha-

nism (termed by Verriest “red-green”) deficiency with a

shift in peak spectral sensitivity to shorter wavelengths.
Table 2eA summary of the Verriest classification of acquired c

Type Severity F-M 100-Hue axis Ra

No defined axis Trichromatic

Monochromatic

Mild red-green and tritan

No color discrimination

Increa

match

Variab

Type I Red-green Trichromatic

Dichromatic

Mostly between protan

and deutan

As above, then between

deutan and tritan

Protan

First p

scotop

Type II Red-green Trichromatic

Dichromatic

Mostly between protan

and deutan

Mostly

Deuter

Type III tritan Trichromatic

Dichromatic

Tritan

Tritan (eventually tetartana)

Mostly

CSR, central serous retinopathy; RRD, rhegmatogenous retinal detachme

a An antiquated term for a hypothetical defect of the “yellowmechanism

through a combination of tritanopia and deuteranomaly.
2. Type II acquired color vision deficiency is an M-L mecha-

nism deficiency in which there is relative preservation of

the spectral sensitivity function.

3. Type III acquired color vision deficiency is an acquired S-

mechanism (termed by Verriest “blue-yellow”) deficiency

that may be accompanied by a shift in peak spectral

sensitivity to shorter wavelengths.

4. Ill-defined or not classifiable.

Verriest’s classification system is elaborated in Table 2. Of

note, Verriest observed that when acuity is affected by a dis-

ease process, M-L mechanism discrimination appears to be

concomitantly disturbed. Furthermore, he found that most of

the conditions he studied were associated with type III S-

mechanism deficiencies. Both these points will be taken up in

subsequent sections. Verriest’s classification also referred to

pseudoprotanomaly and scotopization, each of which may

occur in retinal diseases. Pseudoprotanomaly is a form of

alteration system characterized by a Rayleigh match in which

the subject requires more red in the red-green mixture to

match the yellow primary than a normal subject.192 It is

distinguished from the congenital color vision deficiency

protanomaly by (generally) a smaller magnitude of mid-

matching point shift and by an absence of a significantly

aberrant brightness matching function. This defect results

from decreased effective optical density of the cone photo-

pigments via reduced “self-screening” (self-screening has the

effect of broadening the absorption profile of photopig-

ments).204 The reduction in effective optical density may

result either from decreased photopigment concentration

and/or from photoreceptor disarray and/or from shortened

photoreceptor outer segments. Scotopization refers to intru-

sion of the rod system under the photopic conditions in which

color vision tests are conducted.155 The exemplar of this

phenomenon is rod monochromacy or achromatopsia, and

similar phenotypes can be observed at certain stages of other

retinal dystrophies. Mesopization is a loosely defined term

initially used to describe performance at the F-M 100-Hue in

patients with acquired S-mechanism deficiency after it was
olor vision deficiency: His original nomenclature is retained

yleigh match Exemplars

sed Rayleigh

ing range

le

Macular cysts and toxic amblyopia

End-stage of type I-III

omalous

rotanopic then

ization

Choroidal atrophic processes

Stargardt’s

deuteranomalous

anopic

Usher’s; optic nerve disease, optic neuritis, toxic

amblyopia, optic atrophy, chiasmal disorders,

peripheral chorioretinal degenerations, angioid

streaks, myopic choroidal degeneration, RRD,

CSR, and chorioretinitis

protanomalous Vascular retinopathies and papilledema,

glaucoma, dominant optic atrophy

nt.

” which could theoretically also occur as a congenital color deficiency

http://dx.doi.org/10.1016/j.survophthal.2015.11.004
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noted that performance of those with normal color vision

made similar arrangements under mesopic conditions.40

3.1.4. Marré
Marré posited that the type of acquired color vision defi-

ciency encountered was a function of fixation (the “fixation-

eccentrization” theory). This classification system was

based on empirical observations of threshold sensitivity

(using a Wald’s216 modification of a 2-color technique first

introduced by Stiles194,195) in those with acquired color

vision deficiency and in normal subjects at various retinal

eccentricities.118 Marré observed that eccentric fixation

could occur in patients with decreased acuity and further

observed that in normal subjects, perifixation threshold

sensitivity measures mediated by the M- and L-cones

decline while those mediated by the S-cones improve. If

central fixation is disrupted by a pathologic process, the “red

and green” (i.e., L- and M-cone) color vision mechanisms

(CVMs) will automatically be affected whereas the “blue”

(i.e., S-cone) CVM may show a paradoxical improvement or,

if affected by the pathology, may show falsely “normal”

sensitivity. Conversely, if fixation is not disrupted, an S-

mechanism deficiency is more likely to occur.

This theory is conceptually attractive because it appears

to explain the apparent selectivity of color vision deficiency

based solely on the portion of the visual field affected.

Certainly, observations regarding fixation may account for

some alterations, but are notdas Marré and Pinckers later

noted157dwholly satisfactory. First, the claimed decrement

in threshold sensitivity from fixation to 6� for the L- and M-

cone mechanisms of 5.2 dB and corresponding increase of

4.0 dB for the S-cone mechanism may be an overestimate.157

The seminal report on the peripheral sensitivity of the CVMs

by Wooten and Wald found that the total increase in sensi-

tivity for the S-cone mechanism relative to the loss in

sensitivity for the M- and L-cone systems was about 5 dB at

an eccentricity of 7�.228 Furthermore, they found that the

differential effect is abolished once absorption by macular

pigment is taken into account, suggesting a likely interindi-

vidual variability in the effect (mirroring the known indi-

vidual differences in macular pigment optical density).65 A

second, and related point, is that such observations

regarding fixation and the CVMs are unlikely to account for

changes in color discrimination at certain color vision tests,

which may be relatively robust to changes in fixation.185

Third, the effect is likely to be highly dependent on the

stimulus size used, with smaller stimuli favoring this dif-

ference. Finally, the instrumentation available to Marré at

the time would not have allowed for accurate assessment of

habitual fixation patterns in her subjects. Nevertheless, such

objections downplay the important empirical observations

Marré made regarding the pattern of fixation and prepon-

derant acquired color vision deficiency.

3.1.5. Pinckers
Pinckers took up and elaborated on the findings of Verriest in

an attempt to use the level and topographic location of pa-

thology (the “depth-localization” theory) to account for the

observed color deficiency in a variety of disease states. He

suggested that disease of the choroid and retinal pigment
epithelium resulted in nonselective loss of rods and cones and

that inner retinal or optic nerve disease never demonstrated

the stigmata of cone damage and loss (pseudoprotanomaly

and scotopization). Peripheral photoreceptor disease, he sug-

gested, tended to cause a type III acquired color vision defi-

ciency (see Fig. 2), whereas photoreceptor disorders involving

the central retina tended to cause a type I acquired color vision

deficiency leading ultimately to scotopization. It will be noted

that there is some overlap in the localization part of Pinckers’

“depth-localization” classification scheme and Marré’s “fixa-

tion-eccentrization” theory: indeed, Marré and Pinckers later

reconciled their classification systems.157 The implicit

assumption of Pinckers’ treatise is that falling acuity is asso-

ciated with eccentric fixation and this, for the reasons elabo-

rated in the previous section, leads to an M-L mechanism

deficiency.158 Although this may account for some of the

changes observed in CVMs in some patients, another expla-

nation that does not rely on eccentrization can also explain

the relationship between disturbance of acuity and acquired

M-L mechanism deficiency. This is dealt within the following

section.

3.1.6. A current interpretation
An interpretation informed by our current knowledge of the

apparatus of color vision would suggest a physiologic expla-

nation for Verriest’s original observations such as the asso-

ciation between loss of visual acuity and loss of M-L

mechanism color discrimination. Losses in visual acuity

imply impairment of the midget cell pathway and its asso-

ciated apparatus. This system is specialized for what has

been described by some as the “main business” of vision-

dspatial discrimination.129 Superimposed on this system is a

mechanism specialized for red-green color discrimination.

Diseases affecting this pathway will therefore be generally

expected to affect both spatial vision and red-green color

discrimination. Conversely, diseases selectively affecting the

S-cones and their pathways would not be anticipated to have

any effect on acuity or luminance contrast detection. Again,

the relationship between decreased acuity and M-L mecha-

nism deficiency is not invariable, nor should a precise rela-

tionship be anticipated as no clinical test determines the

spatial acuity of color vision. First, violations can occur via

concomitant disease; for example, many retinal dystrophies

are accompanied by media opacity. Second, pseudoprotano-

maly may occur in the presence of normal visual acuity.192,206

Third, specific congenital disease mechanisms that are

generally classified as “cone dysfunction syndromes” illus-

trate that under certain conditions this relationship may

break down. For example, patients with M-cone opsin mu-

tations have been described in which there are optically

empty cones with deuteranopic color vision, but normal

acuity.28 Such phenotypes can be explained by the observa-

tion that “normal” visual acuity can be supported by a

“normal” complement of L-cones (with concurrent loss of all

M-cones, i.e., with roughly 70% of the total normal cone

complement). Conversely, patients with a rare cone

dysfunction phenotype known as oligocone trichromacy27

may demonstrate reduced acuity (usually about 20/40e20/

80) with “normal” color vision.122 Imaging studies suggest

that this rare phenotype may result in some patients from a

http://dx.doi.org/10.1016/j.survophthal.2015.11.004
http://dx.doi.org/10.1016/j.survophthal.2015.11.004


Fig. 2 e Humphrey 10-2 visual field plots for a patient with autosomal recessive progressive cone dystrophy

demonstrating behavior predicted by the Marré and Pinckers model. The x and y axis depict eccentricity in degrees and

the z axis sensitivity in dB. A: The top left plot shows sensitivities for Goldmann size V blue (460 nm) stimulus on a

100 cd.mL2 yellow background, whereas B: the top right shows sensitivities for Goldmann size III red (dominant

wavelength 650 nm) targets presented on a 10 cd.mL2 white background. Equivalent plots for normal observers are

plotted on the bottom row (C: left blue-on-yellow; D: right red-on-white). Despite evidence of a significant reduction in L- and

M-cone mediated sensitivity in the periphery (as evidenced by reduced sensitivity for red-on-white perimetry) the patient

with cone dystrophy demonstrated an isolated S-mechanism/tritan deficiency at clinical color vision tests (consistent

with widespread loss of the S-cone mechanism).
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decrease in the normal complement of cones and in others

from presumed dysfunction in a normal complement of

cones.125 In both mechanisms, the disease causes dysfunc-

tion such that acuity is disrupted, but not color discrimina-

tion on standard clinical color vision tests. By way of

example, a 20/80 letter subtends 200, of which 40 is deemed

the critical detail size, whereas clinical color vision tests use

targets of about 1.75� or more, over which enough functional

cones may be recruited to demonstrate reasonable color

discrimination. Not all these subjects, however, have “normal

color vision.” Even those who are able to pass standard

clinical tests of color vision appear to have decreased color

discrimination at other color tests,125 such as that described

by Regan and colleagues.166 Finally, some patients with this

conditiondsuch as the patient with normal cone density

described by Michaelides and colleaguesdalso manifest

nystagmus, which may contribute to the asymmetry in visual

acuity and color vision findings.125
3.2. Why is S-mechanismeacquired color vision
deficiency more common than acquired M-L mechanism
deficiency?

In contrast to congenital color vision deficiencies,223 acquired

color vision deficiency commonly affects S-cone mediated

discrimination, and recent epidemiologic surveys suggest that

acquired color vision deficiency affecting the S-mechanism

outnumbers those affecting the M-L mechanism by at least 2

to 1.81,178 Several hypotheses have been proposed to account

for the apparent “vulnerability” of the S-mechanism. Different

single, or combinations of multiple, mechanisms may

contribute to type III defects in certain disease states.

3.2.1. The pseudoproblem hypothesis
This hypothesis is based on the observation that certain tests

of color vision are inherently more likely to reveal S-mecha-

nismdeficiency. Exemplars cited in an article of a discussion of

http://dx.doi.org/10.1016/j.survophthal.2015.11.004
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the International Research Group on Color Vision Deficiencies

allude to both the F-M D-15 and F-M 100-Hue as culprits.130 In

fact, the F-M D-15 is less likely to demonstrate S-mechanism

deficiency thanM-Lmechanismdeficiency because of the large

chromaticity difference between the pilot cap and cap 15, thus

offering the subject fewer opportunities to make tritan cross-

ings (see the following). A similar phenomenon has been

observed to occur with the City University Test (CUT; which is

a derivative of the F-M D-15). It is true, however, that normal

trichromats make more errors in the region of caps 40e50

when performing the F-M 100-Hue test.161

3.2.2. The scarcity hypothesis
This hypothesis supposes that, if a fixed proportion of all cone

types are lost, the effect will be greatest for the S-cones

because of their paucity.130 Similar arguments are proposed

for the S-cone pathways. Although such a hypothesis might

not initially seem consistent with classical signal detection

theory, where likelihood of detection is considered propor-

tional to the square root of receptor number, it might be

supposed that a critical number of receptors are required to

generate a reliable signal and that this number is fractionally

higher (but not necessarily absolutely) for the S-cone sys-

tem.199 The physiologic breakdown of color discrimination for

small or fine targets gives us some clue; small field tritanopia

exists for targets at, or smaller than, about 150.226 No such

effect has been demonstrated to date for the M-L mechanism,

although the experimental paradigms previously used to

investigate wavelength discrimination for small targets (1.50)
did not even elucidate small field tritanopia because fixation

was not controlled.11 If we assume that color discrimination

for small targets scales in proportion to cone subtype resolu-

tion for gratings30,57,120 then the chromatic point resolution of

theM- or L-mechanisms is at least 1.67 times finer than for the

S-cone mechanism. Assuming that the area of point resolu-

tion (for circular or square targets) represents an area con-

taining the minimum number of detectors required to make

color discriminations, then the most conservative estimate

suggests theM-Lmechanism could theoreticallymake dowith

2.8 (i.e., 1.672) fold fewer cones. This rough calculation should

be taken with a grain of salt as it makes several assumptions

in addition to those already mentioned. It assumes that the

remaining cones and their postreceptoral connections are

normally functional, that topographic variations in their

subtype ratios are insignificant, that summation coefficients

over the areas are constant, and it ignores prereceptoral

filtering. Nevertheless, and as noted previously, M-L mecha-

nism color discrimination is retained at stimulus sizes where

small field tritanopia occurs, thus providing some semi-

quantitative support for this observation. A variation of the

scarcity hypothesis points to the central absence of S-cones

within the foveolar region: should a pathologic process affect

the juxtafoveolar area, a selective S-mechanism deficiency

could ensue with comparatively less S-cone loss. Such a

mechanism has been observed in some diabetics.41 This the-

ory could also be invoked to explain why some patients with

the same condition may display differences in M-L mecha-

nism discrimination as a consequence of the disease: patients

with extreme L-cone:M-cone ratios would be anticipated to

be especially susceptible to acquired M-L mechanism
deficiency. Thus in the context of retinal disease, generalized

cone loss in a patient with the “normal” L-cone:M-cone ratio

might result in S-mechanism deficiency. While in patients

with highly biased ratios, there might be concomitant ac-

quired M-L mechanism deficiency.

3.2.3. The vulnerability hypothesis
In addition to being scarce, there are physiologic and histo-

logic differences between the S-cones and their pathways and

the other cone classes and their pathways. The vulnerability

hypothesis supposes that these peculiarities render the S-

cones more vulnerable to pathologic processes.74 There is in-

direct evidence from psychophysical data to support such a

hypothesis in the case of diabetes and retinitis pigmen-

tosa.59,74,198 Furthermore, there is histopathologic evidence to

suggest that the S-cones are selectively affected in certain

diseases, such as diabetic retinopathy and retinal detach-

ment.34,147 Similarly, it has been suggested that the konio-

cellular system may be more vulnerable to glaucomatous

optic neuropathy when compared to the midget ganglion cell

pathway, though this is a matter of conjecture.174

3.2.4. The reduced redundancy hypothesis
This hypothesis is based on the observation that the S-cone

system is devoted almost exclusively to the sense of color,

with little contribution to spatial and temporal resolution and

contrast detection. Certain tests of the M- and L-cone sub-

systems (e.g., testing the “red” and “green” CVMs using the

Wald-Marré technique) might therefore be anticipated to be

less likely to be affected by pathologic processes because of

detectiondand therefore built-in redundancydby a number

of mechanisms.130 Careful experimentation, such as the use

of silent substitution techniques, should overcome this

problem.

3.2.5. The M- or L-subsystem input hypothesis
The S-mechanism relies on a comparison of quantum catches

from the M- and L-cones to the S-cones,34,147 making it

inherently reliant on M- and L-cones. This renders the S-cone

mechanism vulnerable to loss of M- and L-cones as well as to

loss of S-cones. Although this hypothesis expresses what is in

essence a truism, in practice severe loss is probably required

for this pathophysiologic mechanism to have a perceptible

effect on S-mechanism discrimination at clinical color vision

tests.124,185 Indeed, patients with selective and profound los-

ses of the M- or L-cones have been described in which there is

no concomitant loss of S-mechanism discrimination; for

example, patients with S-cone monochromacy are typically

able to make discriminations along a tritan line.185 Further-

more, this mechanism should not adversely affect S-cone

mediated detection tasks, such as short wavelength auto-

mated perimetry (SWAP).185

3.2.6. Aberrant adaptation hypothesis
The aberrant adaptation hypothesis supposes that certain

tests place the S-cone system at an operational disadvantage.

Examples include using yellow high-luminance backgrounds

to test the Stiles p1 mechanism. Although the law of adaptive

independence suggests that such fields should not signifi-

cantly affect S-cone mediated sensitivity, they in fact do, as is
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evinced by the phenomena of combinative euchromatopsia162

and transient tritanopia.134 Both are thought to occur at a

postreceptoral site that sets the gain of the S-cone pathway.131

S-cone sensitivity is proposed to be optimal for neutral back-

grounds that leave this mechanism in the middle of its oper-

ating range. Adaptation to yellow backgrounds suppresses

this mechanism initially, after which further adaptation is

supposed to bring it again to the center of its operating

range.131 This hypothesis assumes either a faulty restorative

mechanism or a decreased operating range. Although similar

effects can be demonstrated for the M- and L-cones, they are

comparatively modest.133 Therefore, asymmetry in departure

from adaptive independence may account for some of in-

consistencies between different tests. For example, some

subjects with acquired color vision deficiency may demon-

strate very profound reductions in S-cone sensitivity (report-

edly up to 2 log units) when assessed using intense yellow

backgrounds, and yet, they may demonstrate normal tritan

discrimination at clinical color vision tests.130

3.2.7. Mesopization (“filter effect”) hypothesis
The mesopization (“filter effect”) hypothesis was first applied

to the color vision deficiency in glaucoma after it was observed

that glaucomatous individuals made similar F-M 100-Hue er-

rors to those made by normal subjects under mesopic condi-

tions.40 Subsequent investigation, however, has suggested

that this particular observation reflects an inherent bias in the

F-M 100-Hue (see point 1).40 Taking up a related argument,

Kalloniatis and Harwerth observed that many experimental

paradigms use background intensities which adapt the M- or

L-cone mechanisms such that Weber’s law holds while

simultaneously placing the S-cone mechanism in a state of

adaptation in which it will not display such behavior.88 This

places the S-cone mechanism at an adaptational disadvan-

tage such that a “filter mechanism” (such as decreasing the

size of the eye’s effective entrance pupil) would cause a

disproportionate loss of sensitivity in S-cone mediated

detection tasks. This led them to propose a “filter effect” hy-

pothesis for S-mechanism deficiency secondary to retinal

disease. Although this mechanism could account for dis-

crepancies between increment threshold paradigms and

clinical color vision tests, it cannot explain the preponderance

of S-mechanism deficiencies at clinical tests of color vision,

such as the F-M 100-Hue.60 Furthermore, Kalloniatis and

Harwerth themselves found that such a mechanism did not

wholly account for S-coneemediated sensitivity losses in the

animal model of blue-light phototoxicity used to test their

theory.88 Nevertheless, theirs is an astute observation and

may account for some discrepancies between increment

threshold testing and clinical color vision testing.

3.2.8. Absorption mechanism hypothesis
The absorptionmechanismhypothesis states thatmany ocular

diseases are associated with changes in prereceptoral filtering.

For example, many retinal dystrophies may be associated with

cataract. A prereceptoral mechanism appears to contribute in

part to the S-mechanismdeficiency encountered in diabetic eye

disease, which is known to be associated with lens yellow-

ing.110 Although certain cataracts may cause an induced S-

mechanism deficiency through an absorption mechanism, this
does not hold for all forms of cataract. For example, patients

with retinitis pigmentosa and other retinal dystrophies

commonly develop posterior subcapsular cataract, which

would not alone be expected to cause color vision deficiency.
4. Tests of acquired color vision deficiency

Tests of color vision may be broadly categorized into tests of

discrimination, of matching, or of detection.

4.1. Tests of discrimination

4.1.1. “Pseudoisochromatic” plate tests
Pseudoisochromatic plate tests rely on known characteristics

of color vision deficiencies to detect and diagnose patients

with dyschromatopsia. The first successful plate test was

produced by Stilling, who bypassed the confounding problems

of edge and luminance artifacts that had previously provided

impediments to the production of effective plate tests. He did

this by using 2 key innovations.166 The first was to make both

the figure and the background discontinuous by breaking each

up into a number of discrete elements, negating the possibility

of edge artifacts. The second was to make each element differ

randomly or pseudorandomly in lightness (from its neigh-

bors), so that the need to produce isoluminant pigments was

overcome. It is still important that the luminance of the ele-

ments composing the figure, on average, is close to that of the

background; a 5% (or greater) difference in lightness may lead

to the figure being detected by luminance cues alone.161 A

typical Stilling-type array consists of circles, sometimes of

varying size, that form both the target and the background.

The subject “assembles” the target by perceptually grouping

certain elements of the array by color. All Stilling-type tests

rely on this principle. The color of the array may be selected

such that a target may only be seen by normal subjects

(vanishing plates), or only seen by subjects with color vision

deficiency (hidden plates), or seen differently by subjects with

color vision deficiency (transformation and diagnostic plates).

Themain advantage of Stilling-type tests is that they are quick

and easy to administer. For example, certain editions of the

Ishihara plate test are capable of rapidly and efficiently

screening for M-L mechanism deficiency.38 The disadvantage

of Stilling-type tests is that they do not readily lend them-

selves to differentiating types of M-L mechanism deficiency,

and they cannot reliably distinguish between anomalous tri-

chromacy and dichromacy.

There are variations in the design of plate tests, and these

include the type of color vision deficiency the test has been

designed for, the form of the figure, and the perceptual effect

for the color deficient.

The Ishihara plates were first developed in 1917 for

screening M-L mechanism deficiencies and are probably the

most popular color vision test ever made. The Ishihara plates

efficiently identify those with congenital M-L mechanism

color vision deficiency.15,18 Their usefulness in the context of

acquired color vision deficiency is severely limited. First, they

are poor at quantifying the severity of color vision deficiency.

Second, theymake particular assumptions regarding the color

confusions or perceptual grouping of those with color vision
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deficiency. This raises 2 difficulties. The most commonly

encountered acquired defect of color perception is S-cone

mechanism deficiency, which the Ishihara test cannot detect.

Second, the testmay be defeated by a patientwith an acquired

color vision deficiency who also has a highly aberrant spectral

sensitivity function. Nevertheless, it is common to see these

plates being used in an attempt to quantify acquired color

deficiency inmany clinics; however, the testmay justifiably be

used in conjunctionwith Sahlgren’s saturated test (SST) in the

assessment of acquired color defects.50

The standard pseudoisochromatic plate test seeks to

address some of the shortcomings of the Ishihara plate test

and is comprised of 2 series of tests: the first is designed to

detect and diagnose congenital color vision deficiency and the

second detects acquired color vision deficiency. The tests, as a

combined series feature protan, deutan, tritan, and “scotopic”

plates (the latter are used to detect “scotopization”). The first

series is reported to be reliable in differentiating color defi-

cient from color normal subjects.73 The second series has been

shown to be slightly more sensitive than the first for detecting

congenital M-L mechanism deficiency.76 False positive tritan

diagnoses are frequent with the second edition.104

The American Optical Hardy Rand Ritler (AO H-R-R) test has

been published in 4 editions. The original test included plates

for protan, deutan, tritan, and tetartan deficiencies and also

featured plates with different chromatic separations between

the figure and background in an attempt to quantify the

magnitude of the color deficiency. Its advantage over the Ishi-

hara test in the context of acquired color vision deficiency is the

inclusion of plates designed to test for S-cone mechanism de-

fects. A recent comparison of the fourth edition of this test and

the Ishihara test suggests that the AO H-R-R is superior in the

detection and diagnosis of acquired color vision deficiency in

optic neuropathies.78 Similarly, the test was found to outper-

form both the Ishihara test and the desaturated D-15 test in the

assessment of patients with cone dystrophy.203

The Berson plate test was designed specifically for

differentiating S-cone monochromatism from rod mono-

chromatism13 and has limited clinical utility given that other

more readily available tests make similar distinctions.185 The

test comprises 2 demonstration plates together with 4 test

plates. Each test plate consists of 3 blue-green arrows and 1

blue-purple arrow (the subject’s task is to identify the latter).

Rather than using luminance or lightness noise, this test

matches the arrows for scotopic lightness. This means that

any subject with a nonscotopic spectral sensitivity function

should pass the test based on luminance cues alone.

Although the test can successfully identify S-cone mono-

chromats from rod monochromats,62 Pinckers has shown

that it cannot differentiate between S-cone monochromats

and some progressive cone dystrophy patients.156

4.1.2. Ordering tests
The F-M 100-Hue test was designed by Farnsworth and origi-

nally consisted of 100 disks of Munsell paper.46 The subject’s

task was to order the disks in a gradual progression in color.

After preliminary experiments, 15 disks were removed from

the test to provide it with improved uniformity in terms of

perceptual spacing between adjacent caps. The disks used in

the test are mounted in black-bottle tops, each having a
central circular aperture measuring 13 mm in diameter,

throughwhich theMunsell papermay be viewed. The viewing

distance is not specified, but is usually 40 to 50 cm (and

therefore the corresponding angular subtense of the aperture

is 1.79� to 1.44�). The Munsell papers used in this test have a

value of 5, and a chroma of 4. The caps are organized into 4

boxes; the first consisting of 22 caps, and the remainder of 21

caps. To perform the test, the subject is instructed to arrange

the colors in each box so that they form a gradual progression.

The subjects’ ordering is then scored and charted on a polar

plot (see Pokorny and colleagues161 and Dain38 for a review of

scoring methods); other scoring methods such as Kitahara’s

Fourier analysis93 and Vingrys and coworkers “moment of

inertia” analysis215 have been used to score the F-M 100-Hue.

These offer the advantage of quantifying overall discrimina-

tion, type of loss, and selectivity.

The F-M 100-Hue is often considered the test of choice in

the detection and diagnosis of acquired color vision de-

ficiencies. The principal reason for such a view is that the test

assumes nothing about the color vision of the subject per-

forming the test, who may demonstrate nonclassical “confu-

sion axes.”49 A further advantage sometimes cited is that it

may elucidate unipolar losses in discrimination, though such

losses may owe more to artifacts of the test than the patho-

physiology of acquired color deficiency.49

The D-15 test was designed to dichotomize the color normal

from the color deficient subject93 (hence the designation “D”).46

This test, like the F-M 100-Hue, originally consisted of more

caps, but their numberwas reduced to providemore consistent

spacing in chromaticity. The test consists of a total of 16 caps

that are similar in design to those of the F-M 100-Hue. The

subject’s task is to arrange the colored caps so that they appear

to form a gradual progression in color, beginning with the pilot

cap (which is in a fixed position). Unlike the 100-Hue test, pa-

tients may place colors from opposite sides of the hue circle

next to one another in this test. The F-M D-15 is assessed

visually by plotting the subject’s arrangement graphically:

subjects with congenital color defects tend to place the caps in

a characteristic order (see Fig. 3), and the test may be scored

dichotomously (pass vs fail) using various criteria,17 or quan-

titatively.215 In addition to the classical confusion axes, there is

a distinct scotopic arrangement displayed by those with rod

monochromatism or scotopization, where the apparent axis of

confusion lies between the tritan and deutan axes. S-cone

monochromats, by contrast, demonstrate apparent M-L

mechanism confusion axes (see Fig. 3). The test tends to favor

M-L mechanism confusions as a result of the color spacings

used in the test (There is a large gap in chromaticity between

the pilot cap and 15, thus limiting the opportunities for tritan

crossings). The F-M D-15 remains a popular test as it is easy to

administer, can detect a wide variety of color defects, and

because it is suitable for assessing acquired color vision de-

ficiencies. Like the F-M 100-Hue, the D-15 is not a particularly

good screening test. Depending on the criteria used for fail-

ure,39,46 the test will provide a false negative diagnosis for

around one-third of all patients with congenital color vision

deficiency.39 This feature of the D-15 is sometimes seen as an

advantage as it has been argued that the test is useful for

purpose of vocational testing because it will pass those with

color vision deficiency who are considered “color safe.”38 The
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Fig. 3 e D-15 arrangement plots of patients with A: protanopia (top left), B: deuteranopia (top right), C: tritanopia (middle left),

D: S-cone monochromacy (middle right), and E: rod monochromacy (bottom).
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test will fail all those with dichromatic vision.70 An enlarged

version of the test (the “PV-16”; Lea-Test Ltd., Helsinki, Finland)

in which the colored disk diameter is about 2.5 times the

standard size is available for testing patients with low vision.

Desaturated versions1,63,105 have been also been developed in

an effort to improve test sensitivity.1,63,105 The F-M D-15 also

forms the basis of the City University Test (CUT), whose main

recommendation is that it is perhaps more convenient to

perform.19 The CUT’s principal disadvantage is that it assumes

the color confusions likely to be encountered, thereby losing
some of the advantages of the D-15 in assessing those with

acquired deficiency.

The Mollon-Reffin test is a saturation discrimination type

test.132 The caps used in this test are of a similar design to

those used in the D-15 and F-M 100-Hue tests. The test fea-

tures a series of caps that lie along protan, deutan, and tritan

lines. In addition, there is one demonstration cap, which does

not lie along a dichromatic confusion axis. The rest of the caps

are all neutral but have a varying lightness (there are a total of

9 gray caps). The examiner places one colored cap among a
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Fig. 4 e Yellow luminance setting versus red-green ratio for

protanopic ( green line), deuteranopic (red line), and rod

monochromat (black line) subjects on the Nagel I

anomaloscope. A normal subject’s mid-matching point is

predicted by the intersection of the protanopic and

deuteranopic matching functions. (For interpretation of the

references to color in this figure legend, the reader is

referred to the Web version of this article.)
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group of neutral caps and asks the subject to identify the cap

that is colored. The colored caps vary in their saturation, so

discrimination along the 3 cardinal axes can be assessed.

Although the test is quick and easy to administer, like many

pigment-based tests, it cannot always successfully differen-

tiate protan from deutan defects. Similarly, it cannot precisely

differentiate dichromats from anomalous trichromats.132 An

enlarged version of the test has been developed for use in

patients with low vision.185

Sahlgren’s Saturation Test (SST) was developed specifically

for use in patients with acquired dyschromatopsias and con-

sists of 12 caps similar in design to those used in the F-M D-15

and F-M 100-Hue tests: 2 caps are neutral, 5 are greenish blue,

and5arebluishpurple.50Thesubject’s task is tosort thecolored

caps from the neutral. A score is derived by summing the

saturation of the caps that are grouped with the neutral caps.

When used in conjunction with the Ishihara test, the SSTmay

help to distinguish congenital from acquired color deficiency.50

4.2. Tests of matching

4.2.1. Rayleigh match
The Rayleigh equation was first described by Lord Rayleigh in

1881 and is based on metameric matching principles.165 The

equation isusuallyobtainedbymixingmonochromatic670nm

(red) and 546 nm (green) light to obtain a match with light of

589 nm (yellow). Because these primaries lie at wavelengths to

which the S-cones are extremely insensitive, the match de-

pends (for the normal trichromat) on the absorption charac-

teristics of the M- and L-cones.205 The object of the Rayleigh

match is to determine the range of red or green primary mix-

tures that canbematched in color to the yellowprimary. Those

with X-linked dichromacy are able to match both the red and

green primaries to the yellow merely by altering the latter’s

luminance. A protanope’s matching function relies solely on

the rate of quantal absorption by the M-cones, and a deuter-

anope’smatching function relies on the rate absorbedby the L-

cones. If we plot a protanope’s and deuteranope’s yellow

luminance settings versus the red/green ratio, this will

graphically represent the quantal absorption of the M- and L-

cones, respectively (see Fig. 4). Anormal trichromatwill be able

toobtainacolormatchonlywhenthequantumcatches ineach

of the cones is equal for the test (i.e., yellow) and the mixture

(i.e., red/green mixture) lights: this is about where the prota-

nope’s and deuteranope’s yellow brightness matching lines

intersect (with variations in midmatching point depending

on the lmax and optical density of the M- and L-cone photo-

pigments).205 Those with rod-dominated spectral sensitivity

functions will make brightnessmatches resembling those of a

rod monochromat (see Fig. 4).

Although traditionally considered a test for congenital color

vision deficiency, the Rayleigh equation is also an important

tool in the assessment of acquired color vision deficiency.171 It

remains the test of choice for detecting and diagnosing M-L

mechanismdeficiencies; it will separate protans from deutans,

and anomalous trichromats from dichromats. In addition, it is

possible to diagnose other phenotypes with the Rayleigh

equation, including pseudoprotanomaly, and extreme anom-

alous trichromacy.171 It is also possible to determine suspect

rod-like luminosity functions, and if variable field sizes are
used, to distinguish between (some) recessive achromatopsia

phenotypes (incomplete achromats with residual M- or L-cone

function have predicted midmatching points at the intersec-

tion of a rod monochromat’s brightness matching function

and those of protanopes and deuteranopes, respectively).185 A

similar phenomenon may be observed in patients with sco-

topization from acquired color vision deficiency (e.g., in Star-

gardt’s disease).161

4.2.2. Tritan matches
Obtaining a satisfactory tritan matching function has proven

difficult for 2 principal reasons. First, such matches are by

necessity trichromatic (in contrast to the Rayleigh match).

Second, there is wide interindividual variation in the pre-

receptoral filtering of short wavelength light (these variations

arise from 2 sources: the lens pigments and the macular

pigments). The most widely used tritan matching function

used today is the Moreland equation, which requires the

subject to match a mixture of indigo and green (originally

430 nm and 500 nm, respectively, but subsequently revised

twice to 436 and 490 nm and then to 440 and 488 nm) to a cyan

primary (a fixed ratio of 480 nm and 580 nm).136,137,191 The

primaries were selected and adjusted to minimize the com-

bined effects of individual variations inmacular pigment and

lens pigment optical density on the midmatching point of

normal subjects.136 Such adjustment, however, simulta-

neously shifts the match from a tritan axis; therefore, it

cannot distinguish complete tritanopia from incomplete

forms in which there is residual tritan color discrimination.

Nevertheless, the Moreland equation has been used in com-

bination with the Rayleigh equation to assess acquired color

deficiency.171 This so-called 2 equation method classifies

deficiencies according to their effects on 2 key parameters:

matching range and midmatching point.171
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4.3. Computerized color tests

A variety of computer-controlled tests of color vision have

been described. Earlier tests used colored targets, for example,

gratings or spots.4,32,179 Modulations in the color contrast of

these targets were used to probe the subjects’ color discrimi-

nation. The disadvantages of such test designs are similar to

those enumerated for early plate tests. Misalignment of guns

on cathode ray tube display monitors may lead to an edge

artifact and, because of individual differences in luminosity

function, these would have to be determined before or during

testing, thus increasing testing time.166 One notable exception

is the method of Chioran and colleagues,32,179 which simul-

taneously gathers data pertaining to luminance discrimina-

tion. Regan and colleagues describe an approach which

combines the innovations of Stilling with a technique to probe

color discrimination along predefined axes.166 The test,

known (and commercialized) now as the “Cambridge Colour

Test” uses a C-shaped colored target presented in a neutral

Stilling-type array. The C itself subtends 4.3� and its gap 1�

with the subject viewing the test at 2.4 m.166 The color of the

test target may be varied in chromaticity along the protan,

deutan, and tritan axes in the shortest version of the test,

or along 20 axes evenly spaced in the CIE 1976 L*u*v* color

space. The test uses an interleaved staircase procedure to

determine the threshold for color discrimination along each of

the axes probed. In the case of the longer version of the test,

threshold data may be fitted with discrimination ellipses.

Similar tests have subsequently been developed,219 one of

which uses temporal modulations in luminance noise.20 A

further development of the test, known initially as the P4 test

but commercialized as the “low vision module” of the Cam-

bridge Colour Test, uses “dithering” to improve color resolu-

tion and alters the stimulus display to comprise 4 circular

targets subtending 4� and separated from neighboring circles

by 2.5� so that the test could be performed by those with

low vision.185,188 Each of the circles varies randomly in

brightness such that the subject cannot use luminance cues to

guess correctly the location of the colored target. The test has

been used successfully in subjects with visual acuities down

to 1.3 logMAR (20/400).188 Theoretical ellipse axes may be

calculated for subjects in whom color vision is dependent on

rod-cone interactions,185 and the test has accordingly been

used in a number of studies investigating cone function in

patients with retinal dystrophies,121 including those treated

with gene therapy.230 A version of the CCT for testing children

has been described.54

4.4. Perimetric tests or tests of detection

Color perimetry enjoyed a period of renewed interest from the

late 1980s, but owes much in its modern incarnation to the

work of Stiles.194,195 His technique of selective adaptation was

first applied to isolate cone from rod responses but was later

used to isolate responses from individual cone types. This

technique was modified by Wald,216 who used broader band

adapting lights and later applied to the clinical assessment of

patients by Marré.118 More recently, such tests were popu-

larized for the assessment of so-called preperimetric glau-

coma through the work of Sample and coworkers, who
combined this techniquewith automated perimetry.173 The 2-

color technique relies on the principal of adaptive indepen-

dence, which supposes that selectively adapting 1-cone

mechanism will have no effect on the sensitivity of the

remaining conemechanisms. Thus, yellow backgrounds have

been used to differentially adapt the M- and L-cone mecha-

nisms to study S-cone sensitivity. Similarly, blue backgrounds

have been used to study L-cone sensitivity and magenta

backgrounds to study M-cone sensitivity.186 Although it is

possible to provide significant isolation of both the S-cones

and L-cones with such techniques, isolating M-cone re-

sponses is more difficult.186 While flickering stimuli have

been proposed as a means of improving cone isolation, this

does not solve the problem of modest M-cone isolation.111 It

has been suggested that paradigms using silent substitution

techniques or random luminance noise may improve isola-

tion, especially of the M-cone system.186 Color perimetry

underwent something of a renaissance in the late 1980s and

1990s, with SWAP touted as a means of assessing patients

with, or at risk of, glaucoma.52,108,115,163,172 Numerous studies

suggest that losses in SWAP sensitivity precede those of

standard white-on-white perimetry. There are, however,

distinct disadvantages to SWAP. It is time consuming to

perform, difficult and highly variable for inexperienced ob-

servers and vulnerable to perturbations in the density of the

lens pigments. Furthermore, other tests such as the so-called

frequency doubling paradigm have proven as effective,

quicker, and easier for subjects to perform.108

Tests of spectral sensitivity on white backgrounds have

been used to explore so-called color opponent processes. At

the background luminances typically used by modern pe-

rimeters (10 cd m�2), the normal spectral sensitivity function

departs from the of the V(l) function and is dominated by 3

peaks believed to reflect the peaks of opponent processes (one

of the peaks of the S/M þ L opponent system is believed to be

obscured by the M/L peaks). Although this form of perimetry

was favored by Verriest and colleagues,69 subsequent simian

trials of this technique suggest that the sensitivity may

nevertheless be governed by the V(l) function at certain

stimulus locations depending on the target size and wave-

length.67 Furthermore, these data suggest poor isolation of

opponent systems even when these governed target detection

using this paradigm.67
5. Color vision in ophthalmic and neurologic
disease

5.1. Disorders of the ocular media

Possibly the commonest mechanism of acquired color vision

deficiency is a so-called absorption mechanism secondary to

the age-associated increase in optical density of the lens pig-

ments.149 The latter are characteristically yellow in color and

absorb of short-wavelength radiation, including ultraviolet

and short wavelength visible light. Because of the gradual

nature of such changes, they are seldom noticed. Further-

more, there is evidence to suggest that increased media ab-

sorption may be offset by increased S-cone sensitivity.83

Implanted intraocular lenses with yellow tints modulate the
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spectral quality of light (when compared to aphakia).183 Most

yellow intraocular lenses would not be anticipated to induce

color vision deficiency,209 and the empirical evidence supports

this assertion.183 Although other conditions (e.g., jaundice)

may also modify the spectral nature of light incident on the

retina, their visual effects are seldom noticed by patients,

presumably because they are dwarfed by other symptoms.

Aberrantly elevated levels of macular pigment may also

induce or modify color vision deficiency. For example,

“excessive” prereceptoral pigment density has been observed

to modify the phenotype of tritanopia such that the defect

simulates tetartanopia87 (an antiquated term for a hypothet-

ical defect of the “yellow mechanism” which could theoreti-

cally also occur as a congenital color deficiency through a

combination of tritanopia and deuteranomaly).185

5.2. Retinal disorders

5.2.1. Photoreceptor disorders
5.2.1.1. Cone dystrophies.

5.2.1.1.1. Photopigment defects. Pedigrees in which either

progressive or stationary cone dystrophy is associated, at least

in the early stage of the disease process, with either a pro-

tan167 or deutan27 deficiency have been described. Affected

patients in some pedigrees are thought to have causative de-

fects in either the photopigment genes or their regulatory

elements.

Reichel and colleagues describe a pedigree in which dele-

tion of a major portion of the L-cone photopigment gene

resulted in a protanopic color vision deficiency in younger

patientswith subsequent profound cone degeneration leading

ultimately to scotopization.167 Other defects have also been

described in which patients display both a color vision defi-

ciency resembling congenital M-L mechanism deficiency in

combination with frank cone dysfunction. A relatively com-

mon opsin gene mutation that can cause congenital M-L

mechanism deficiency results in a cys203arg mutation with

subsequent disruption of a disulphide bond. This mutation is

known to cause dysfunction of the opsin molecule through

impairment of folding, half-life, and light activation.89 Such

mutations have been reported in association with S-cone

monochromatism (when both the M- and L-photopigments

carry the mutation169 or in patients with single X-chromo-

some coded opsin arrays carrying the mutation)140 and also

with a phenotype known as Bornholm eye disease.123 Adap-

tive optics imaging of patients with congenital M-L mecha-

nism deficiency with this mutation occurring in either the

second or third gene in the X-chromosome coded opsin array

has demonstrated disrupted cone mosaics.27 These patients

may have subtle macular disturbance, though with good vi-

sual acuity.27 Molecular analysis suggests that rare exon 3

genotypes (LVAVA, LIAVA) that have been proposed to render

the opsin product nonfunctional may also cause Bornholm

eye disease when occurring in the first gene in the array.119

The LIAVA mutation has also been demonstrated to cause

deuteranopia when occurring in the second position of the

opsin array (i.e., within theM-cone photopigment gene, with a

normal L-cone photopigment gene in position one): in vivo

imaging has shown that this causes a functional loss of cones

which appear intact but optically empty.28 Thus, it appears
that the consequences of deleterious mutations in the opsin

genes (e.g., cys203arg, LIAVA, LVAVA) are partially dependent

on the position of the gene in the array.184 When occurring in

the first genedwhich enjoys preferential expressiondfrank

cone dystrophy is noted. When occurring in the second or

third gene, congenital color vision deficiency is observed, with

subtle abnormalities suggestive of mild dystrophy being

detected clinically or experimentally.

As alluded to previously, S-cone monochromatism may

arise from a number of mechanisms, including mutations to

the locus control region lying upstream of the X-chromosome

opsin array,217 mutations to one opsin gene in patients with

single gene arrays,217 or to both the M- and L-photopigment

gene in patients with 2 gene arrays.169 Patients with this

condition may show slow progression.124 It is also suggested

that tritanopia represents a mildly progressive form of cone

dystrophy. Baraas and colleagues describe 3 members of a

pedigree with tritanopia in which the eldest individual has a

demonstrable loss of tritan discrimination with concomitant

implied disruption of the cone photoreceptor mosaic on

adaptive optics imaging.7 The 2 younger individuals demon-

strated well-preserved color discrimination. One of the

younger patients underwent adaptive optics imaging, which

suggested a comparatively normal photoreceptor array and a

full S-cone complement. Whether the dystrophy observed in

the eldest patient occurred early in life or later is unclear,

though Baraas and colleagues favored the latter hypothesis.7

An alternative explanation is that these patients simply

display variable expressivity. Although patients with frankly

progressive cone dystrophy with typical symptoms of

decreased acuity, hemeralopia, photophobia, and abnormal

photopic electroretinograms (ERGs) have been described in

whom an S-mechanism defect is present, no evidence for a

defect in the S-cone photopigment gene has yet been revealed

in such patients.224

5.2.1.1.2. Phototransduction defects. Defects of the cone

phototransduction mechanism are associated with profound

cone dysfunction. The a-transducin defects have been re-

ported in association with a phenotype resembling incom-

plete autosomal recessive achromatopsia in which evidence

of progressionwas observed in older individuals.121 Mutations

in the cone-specific PDE a- and b-subunits have also been

demonstrated to result in achromatopsia.56,96 Retinal guany-

late cyclase defects have been reported in association with

cone dystrophy61 and also in association with central areolar

choroidal dystrophy77 and Leber congenital amaurosis.154 In

the autosomal dominant guanylate cyclase cone-rod dystro-

phy pedigree described by Gregory-Evans and colleagues, only

the youngest member demonstrated residual color vision.61

There was a profound loss of tritan discrimination with Ray-

leigh matches shifted to longer wavelengths, possibly

consistent with a mechanism relying on rod input to color

matching.185

5.2.1.1.3. Channelopathies. Defects in genes coding for

both the a- and the b-subunits of the cone cyclic guanosine

monophosphate gated cation channels have been implicated

in the pathogenesis of complete and incomplete forms of

rod-monochromatism.94,97,98,168 Evidence from animal
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models and natural history studies suggest that these con-

ditions represent a form of sequential retinal degeneration in

which there is early loss of cone photoreceptor function

which may later be accompanied by a slow decline in rod

function82,91: similarly, retinal ultrastructure has been pro-

posed to show sequential degenerative changes.58 Patients

with rod-monochromatism commonly demonstrate resid-

ual, though rudimentary, color discrimination at certain

color vision tests.185

5.2.1.2. Rod dystrophies or retinitis pigmentosa. Retinitis pig-

mentosa generally causes a type III acquired color vision

deficiency while vision is well-preserved.117 This feature may

help distinguish this condition from other retinal dystrophies

causing a type I defect (e.g., Stargardt disease, cone-rod dys-

trophy). In a minority of patients, there is a concurrent M-L

mechanism defect that appears to be more common with

worsening visual acuity.158 Verriest, using the battery of tests

described previously, found that in 70 eyes of 65 patients, 14

(20%) had normal color vision, 3 (4%) had congenital color

vision deficiency, 6 (9%) had diffuse loss, 2 (3%) had type I M-L

mechanism deficiency, and 45 (64%) had S-mechanism defi-

ciency.212 Pinckers and colleagues examined 98 eyes of 49

patients with the F-M 100-Hue and anomaloscopy (Rayleigh

matches).158 They found that 30 (30.6%) had normal color

discrimination, 4 (4.1%) had nonspecific decreased sensitivity,

30 (30.6%) had an acquired S-mechanismdeficiency, 31 (31.6%)

had combined acquired M-L mechanism and S-mechanism

deficiency, and 3 (3.1 %) had an isolated M-L mechanism

deficiency. They suggest that patients with decreased acuity

(�20/40) were more likely to have an F-M 100-Hue plot

consistent with an acquired M-L mechanism defect.

5.2.2. Other retinal and chorioretinal dystrophies
5.2.2.1. Congenital stationary night blindness. The color vision

deficiency associated with congenital stationary night blind-

ness may be mild and only evident at certain tests.201 Bijveld

and colleagues found that 35.8% (4 of 14 patients with

congenital stationary night blindness type 1 and 25 of 53 pa-

tients with congenital stationary night blindness type 2) of

their cohort examined with the Ishihara, D-15, and AO H-R-R

had an acquired dyschromatopsia. Although the precise na-

ture of the deficiency is not described, they state that patients

with severe deficiency (17% of patients with congenital sta-

tionary night blindness type 2) tended to haveM-Lmechanism

defects.14

5.2.2.2. Fundus albipunctatus. Although color vision may be

“normal” in fundus albipunctatus, S-mechanism deficiency

has been reported in some pedigrees in which 11-cis retinol

dehydrogenase 5 mutations have been demonstrated. For

example, Hotta and colleagues describe male and female sib-

lings in their sixth decade who had S-mechanism deficiency.75

5.2.2.3. Oguchi disease. Colorvision isreportedtobecommonly

“normal” in this condition,229 though phenotypes have been

reported in which there is an S-mechanism deficiency.161

5.2.2.4. Gyrate atrophy. Although color vision may be unre-

markable in the early stages of this chorioretinal disease, it is
affected with disease progression. Takki reports that of the 15

patients tested at the F-M D-15, the youngest 6 (40%) passed

the test, 5 (33%) had an acquired type III S-mechanism defect,

and 4 (27%) had ill-defined defects.200

5.2.2.5. Benign concentric annular dystrophy. This condition,

first described by Deutmann in 1974, appears to be associated

with a type III S-mechanism deficiency.44 For example, van

Lith-Verhoeven and colleagues found that 7 of 9 patients they

tested (method not given) had S-mechanism deficiency.210

5.2.2.6. Choroideremia. Although color vision may be normal

early in the disease process, it appears to be affected in the

majority of individuals with progression of the condition.68

Of 31 cases tested (with the AO H-R-R; Ishihara, D-15,

anomaloscope), Kurstjens found 2 (6%) patients with mixed

S- and M-L mechanism disturbance, 3 (10%) with isolated

type III S-mechanism deficiency, and 10withM-Lmechanism

defects (32%), though up to half of these latter may have had

congenital M-L mechanism defects.103 More recently, Jolly

and colleagues reported their findings in 30 patients (28 with

proven mutations of the CHM gene) tested with the F-M 100-

Hue.84 They found that color discrimination was abnormal,

even in those with acuities of 20/20 or better. Furthermore,

there was evidence of decline in color discrimination with

declining acuity.

5.2.2.7. Best or vitelliform dystrophy. In their review, Krill and

Deutman remark that color vision is generally reduced once

vision falls to less than 20/40.100 They also suggest that while

the F-M 100-Hue shows a predominantly tritan axis, there is a

protan shift when performing Rayleigh matches: this would

be anticipated if we extrapolate the findings in other condi-

tions causing retinal elevation or traction.192 Castelo-Branco

and colleagues investigated 34 patients with Best disease

and found that color discrimination at the Cambridge Color

Test was correlated with the clinical stage of the disease.24,29

They found that S-mechanism deficiency predominated in

the early disease stages but that anM-Lmechanismdeficiency

predominates in its later stages.

5.2.2.8. Butterfly pattern dystrophy. Fossarello and colleagues

describe 6 patients from 2 families in whom peripherin or

retinal degeneration slow mutations were identified.48 They

suggested that performance at the F-M 100-Hue was normal

until ophthalmoscopically visible changes were evident,

when anarchic arrangement patterns were observed. In a

single small pedigree (of 11 subjects, with 3 having butterfly

pattern dystrophy) followed up over a period of 3 years by

Mantyjarvi and Tuppurainen, color vision (assessed using the

standard pseudoisochromatic plate plates, Rayleigh equation,

and F-M 100-Hue) was normal in the youngest patient (age

34 years).116 The eldest patients (58 and 61 years old at pre-

sentation) demonstrated progressively decreased generalized

loss of color discrimination over the 3 year follow up, with

error scores falling just less than,213 or just greater than, pre-

viously published age normals.92

5.2.2.9. Doyne honeycomb degeneration or Malattia Leventinese.
Although color vision is commonly normal in the early stages
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of this condition, there is phenotypical variation. For example,

Haimovici and colleagues used a computer-controlled test of

color discrimination to study 6 patients with EGF-containing

fibulin-like extracellular membrane protein 1 mutations who

had symptomatic reductions in scotopic vision that occurred

without clinically identifiable atrophy or choroidal neo-

vascularization.64 They found global elevations in color

discrimination along protan, deutan, and tritan axes in all

affected patients, with profound defects occurring in some

individuals.64

5.2.2.10. North Carolina macular dystrophy. Color vision may

be normal in the early stages of this disease. For example,

Rosenberg and colleagues studied 10 patients with North

Carolina macular dystrophy: data on color vision were re-

ported for 4 patients, each of whom passed the tests used

(Ishihara test and Lanthony tritan album).170 In contrast,

Godley and colleagues found that the 2 patients (from a pedi-

gree containing 15 affected individuals) tested had profoundly

reduced sensitivities along the protan, deutan, and tritan axes

at a computer-controlled test of color discrimination.53

5.2.2.11. Sorsby fundus dystrophy. Capon and coworkers

found evidence to suggest a prodromal loss of tritan discrim-

ination at the F-M D-15 in 3 patients examined with this con-

dition which preceded vision loss.26 Atchison describes a large

pedigree with this dystrophy in which the clinical picture was

clouded by the presence of congenital deuteranomaly in some

family members; although those with the condition were

noted to have acquired defects, little detail is given regarding

their nature.6

5.2.2.12. Stargardt disease. Stargardt disease is perhaps the

archetypical cause of a type I acquired M-L mechanism defi-

ciency which leads to scotopization.161 The condition is most

frequently inherited as an autosomal recessive trait and the

commonest causative gene, ABCA4, codes for an adenosine

triphosphateebinding cassette transporter molecule shown

to be expressed in rod197 and cone126 photoreceptor outer

segments. It has previously been demonstrated that Rayleigh

matches widen and sensitivity to the red primary progres-

sively decreases with disease progression.161 Eventually, the

brightness-matching function parallels that of a rod mono-

chromat as rod activity dominates residual visual function.161

In a study of 27 patients from 21 families with Stargardt, Maia-

Lopes and colleagues found that only 2 (7%) had normal color

vision (as assessed using both the Rayleigh and the Moreland

matches), 13 (48%) had mixed S- and M-L mechanism defi-

ciency, 4 (15%) had M-L mechanism deficiency, 4 (15%) had S-

mechanism deficiency, and 4 (15%) were unable to perform

the test because of low vision.114 Of the 12 carriers of ABCA4

mutations (confirmed by genotyping) and whose color vision

was assessed, 6 (50%) were normal, 3 (25%) had M-L mecha-

nism deficiencies, 2 (17%) had S-mechanism deficiency, and 1

(8%) had mixed S- and M-L mechanism deficiency.

5.2.2.13. Enhanced S-cone syndrome. Jacobson and colleagues

found that their 11 patients with enhanced S-cone syndrome

were able to pass either the F-M D-15 or the AOH-R-R plates.80

Subtle abnormalities, however,may be detected at other tests.
For example, Nakamura and colleagues undertook extensive

psychophysical testing of a single subject homozygous for a

nonsense mutation the NR2E3 (nuclear receptor subfamily 2,

group E, member 3) gene and demonstrated a unilateral Ver-

riest type II M-Lmechanism disturbance not detected at the F-

M D-15.138

5.2.2.14. Leber congenital amaurosis. The early stages of the

condition are characterized by an acquired S-mechanism

deficiency that progresses to involve the M-L mechanism over

time, leading to anarchic losses that accompany the profound

loss of vision seen in this condition.153

5.2.2.15. Age-related macular degeneration. Color vision defi-

ciency is seldom used as a means of detecting, diagnosing, or

monitoring the progression of age-related macular degener-

ation. Consequently, although our ability to readily monitor

retinal structure in this disease has improved with the advent

of modern imaging techniques, few attempts have beenmade

to relate this to function in terms of color vision. Much of the

early literature has been well-summarized previously.161

Recently, a small study conducted by O’Neill-Biba and col-

leagues investigated tritan and M-L mechanism discrimina-

tion using a computer-controlled test of color vision in 18

subjects with age-related macular degeneration.150 They

found evidence for a greater loss of tritan discrimination:

isolated losses of tritan discrimination occurred in 5 of 36 eyes

(14%, all having category 245 age-related macular degenera-

tion), with one eye (3%) demonstrating normal discrimination

(with category 1 changes, i.e., normal for age), and the

remaining 30 (83%) demonstrated elevated M-L mechanism

and tritan thresholds. Arden and Wolf investigated color

discrimination in 24 patients with age-related maculopathy

using 2 different sized optotypes (1.5� and 6.5�) presented

within masking random dynamic luminance noise on a

cathode ray tube monitor.5 Interestingly, they suggest that

tritan discrimination thresholds for the 1.5� optotype

completely separates eyes with age relatedmaculopathy from

those of normal patients (M-L mechanism thresholds were

within normal limits) while some overlap occurs with the 6.5�

optotype.

5.2.2.16. Phototoxicity. Rai and colleagues164 study of patients

with solar photoretinitis found no evidence for color vision

deficiency at the F-M D-15 in 44 eyes examined some

1e3 years after the initial insult. A subset of their patients (10

affected eyes in total) underwent a computer-controlled test

of color discrimination: 7 (70%) were found to have a selective

impairment of the S-mechanism.

5.2.3. Fundus detachments
5.2.3.1. Retinal detachment. Chisholm and colleagues investi-

gated the recovery of color discrimination after successful

retinal detachment repair by “plombage” with, or without, an

encircling element.33 They found evidence for an S-mechanism

deficiency at the F-M 100-Hue in patients with macula-on

detachment, whereas patients with macula-off detachments

had a generalized loss of discrimination. Improvements were

noted over time, though at different rates depending on pre-

operative macula status: those with macula-on detachment
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achieved F-M 100-Hue scores equivalent to those of fellow eyes

at about 3 or somonths, while color vision deficiency persisted

at 2 years in the macula-off group.33 Although color vision

deficiency is anticipated in macula-off detachment, the

reason for dyschromatopsia in macula-on detachment is un-

clear. The most likely explanation is that it is due to the

presence of subclinical submacular fluid postoperatively,

which is a relatively common finding (occurring inmore than a

third of patients at 6 weeks after scleral buckling formacula-on

detachment).12 Little is known regarding color vision after

detachment repair by scleral buckling versus pars plana vit-

rectomy. Tritan and so-called “tetartan” F-M 100-Hue axes

have been reported following successful repair of macula-off

retinal detachment by either scleral buckling or pars plana

vitrectomy.180 Although Serra and colleagues found a trend

toward higher F-M 100-Hue error scores following pars plana

vitrectomy (5 eyes) compared to scleral buckling (12 eyes) in

phakic patients, this difference did not attain statistical sig-

nificance in their small sample.180 Of their 17 subjects, 12 (70%)

had acquired S-mechanism deficiency, 2 (12%) had total error

scores within normal limits, and 3 (19%) had anarchic losses at

the F-M 100-Hue.180 The finding of S-mechanismdeficiencies in

subjects with successfully repaired macula-off retinal detach-

ment is supported by histologic studies that confirm selective

loss of S-cones.148

5.2.3.2. Central serous retinopathy. In their elegant study of 3

patients with this condition, Smith and colleagues demon-

strated that central serous retinopathy may cause pseudo-

protanomaly through reduced effective optical density of the

photopigments: they suggested that the mechanism is aber-

rant photoreceptor tilt (as evidenced by an abnormal Stiles-

Crawford I effect).192 Concomitant S-mechanism defects are

also noted in patients with this condition.192 Maaranen and

colleagues used a combination of the F-M 100-Hue and

anomaloscopy (Rayleigh and Moreland equations) to demon-

strate color vision abnormalities in 26 of 39 (67%) patients after

the resolution of central serous retinopathy (all had achieved

a final visual acuity of � 20/20).113 Of these, 20 (51%) had an

acquired S-mechanism defect, 5 (13%) combined M-L mecha-

nism and S-mechanismdeficiency, and 1 (3%) an acquiredM-L

mechanism deficiency. Interestingly, 19 (49%) of contralateral

“normal” eyes had color vision deficiency, supporting the

suggestion of a high rate of resolved subclinical disease in

fellow eyes.

5.2.4. Diabetic retinopathy
Diabetic retinopathy is commonly associated with acquired

color vision deficiency. About half of the patients in the Early

Treatment of Diabetic Retinopathy Study were found to have

abnormalities on the F-M 100-Hue.47 Barton and colleagues

performed cluster analysis of F-M 100-Hue plots in 2701 pa-

tients from the Early Treatment of Diabetic Retinopathy Study

cohort and found that 51% of eyes had normal color vision;

26% of eyes had an isolated acquired S-mechanism deficiency,

whereas the rest had combined S- and M-L mechanism defi-

ciency, including those patients with presumed congenital

color vision deficiency.10 The mechanism of tritan acquired

deficiency appears to be multifactorial, due in part (in phakic

patients) to lenticular changes resulting in increased
prereceptoral filtering of short-wavelength light.42 Decreased

S-coneemediated sensitivity has been observed, however,

even after such absorption is accounted for.41 Similarly, his-

tologic studies also support the hypothesis that S-cones are

selectively affected in diabetic retinopathy.34
5.3. Optic nerve disorders

5.3.1. Glaucoma
Glaucoma is a term applied to a collection of optic neuropa-

thies that may have acute or chronic forms and which share

the common feature of loss of retinal ganglion cells and

excavationdor cuppingdof the optic nerve head.220 Several

early studies suggested that glaucoma causes an acquiredM-L

mechanism deficiency161; however, such studies concen-

trated on patients with advanced disease,161 and it is now

generally accepted that glaucoma first causes an acquired S-

mechanism deficiency on conventional color vision tests such

as the F-M 100-Hue and desaturated D-15.175 Much of the

attention over the past 3 decades has been directed at

detecting loss of function before this is evident with conven-

tional visual field tests (so-called “preperimetric glaucoma”).

As detailed previously, color perimetrydin the form of

SWAPdunderwent a brief renaissance as a test of preperi-

metric glaucoma, but other testing paradigms have superior

screening utilities.135

5.3.2. Hereditary optic neuropathies
5.3.2.1. Dominant optic atrophy (also known as dominantly
inherited optic atrophy). This condition, most commonly

associated with OPA1 gene mutations, is marked by signifi-

cant phenotypical heterogeneity such that some patients

within the same pedigree demonstrate mild disease while

others demonstrate more severe vision loss.109 Although the

condition has been considered to be a notable exception to

Köllner’s rule, color vision findings are heterogenous.161

Several pedigrees have been described in which there is a

color vision deficiency that mimics congenital tritanopia, to

the point that it had been suggested that the 2 conditions may

represent the same entity,101,102 but this hypothesis has been

convincingly rejected.190 Numerous cases of M-L mechanism

deficiency have been reported,161 and although patients may

demonstrate a greater loss of tritan discrimination than M-L

mechanism discrimination,188 patients with isolated S- or M-L

mechanism defects probably represent the minority.

5.3.2.2. Leber hereditary optic neuropathy. This mitochond-

rially inherited disease generally causes profound loss of

vision.189 Although color vision may be difficult or impossible

to assesswith standard clinical color vision tests following the

onset of the condition, type II M-L mechanism deficiencies at

the F-M 100-Hue may be a prodromal sign146 (Though the

study cited may have been confounded by simultaneous

congenital color vision deficiency).146 A recent study of a large

Brazilian pedigree which combined genetic analysis with

computerized color discrimination testing suggests impair-

ments in asymptomatic carriers (46 tested) of the condition.

Losses of M-L mechanism discrimination were confirmed to

exceed those of S-mechanism discrimination, and evidence
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was found for sex-related differences in color discrimination

(with males being more severely affected).211

5.3.3. Optic neuritis
By far, the largest study of color vision in optic neuritis was

undertaken as part of the Optic Neuritis Treatment Trial: a

total of 438 participants were tested in the acute phases of

inflammation and at 6 months.177 During the acute phases of

optic neuritis, 93.2% of patients demonstrated abnormal F-M

100-Hue scores while at 6 months this had fallen to 39.4%. Of

those patients demonstrating isolated defects, there was a

slight preponderance of acquired S-mechanism deficiency at

presentation (40.8% S-mechanism, 29.6% M-L mechanism,

29.6% nonselective) and of acquired M-L mechanism defi-

ciency at 6 months (36.1% S-mechanism, 40.5% M-L mecha-

nism, 23.4% nonselective).177 A definite relationship was

observed between visual acuity and likelihood of demon-

strating an abnormal F-M 100-Hue score.

5.3.4. Optic nerve compression
Paulus and Plendl found no evidence for preferential impair-

ment of either S-mechanismorM-Lmechanismdiscrimination

at the F-M 100-Hue test in 13 patients with compressive optic

neuropathies from a variety of mechanisms.152 Sharanjeet-

Kaur and colleagues investigated “chromatic” (including the

F-M 100-Hue and spectral sensitivity estimates) and achromatic

vision in 15 patients with thyroid-related orbitopathy compli-

cated by optic nerve compression.181 Their results did not

suggest preferential impairment of one subsystemof color over

the other. In a detailed analysis, Cruysberg and Pinckers

compared color vision at a battery of tests (including plate tests,

the F-M 100-Hue, and anomaloscopy) in 29 patients undergoing

neurosurgical treatment for a variety of underlying conditions

causing optic nerve compression.36 Twenty-four of 29 patients

(83%) demonstrated abnormal color vision in one or both eyes.

Ten eyes (of 10 patients) had acquired type II M-L mechanism

deficiency while the remainder had unclassifiable defects.

5.4. Cerebral achromatopsia

Excellent reviews of cerebral achromatopsia have been pub-

lished over the past 5 years, and this subject will be dealt with

briefly.8,9 Empirical evidence of a cortical center for the sense

of color was first recognized by Verrey in 1888, but his work

was sidelined until the latter half of the 20th century when

studies of the simian cortex, multiple clinical and neuro-

pathologic correlations, and advanced imaging all leant sup-

port to this notion.8 Disorders of “human V4” in the ventral

occipitotemporal cortex are associated with achromatopsia or

dyschromatopsia. If unilateral, they may result in contralat-

eral hemiachromatopsia or dyschromatopsia (including a

failure of color constancy).8 As a rule, such lesions affect other

aspects of visual function.51

5.5. Drug-induced dyschromatopsia

Numerous drugs have been observed to cause dyschroma-

topsia via a variety of proposed mechanisms: many of these

may be of interest for historical reasons. Advances in drug

development, disease patterns, and prescribing patterns
have meant that some previously important causes of

medication-induced dyschromatopsia are seldom seen,

while newer ones are emerging. This list is not exhaustive

but concentrates on medications that are of current clinical

relevance.

5.5.1. Phosphodiesterase-5 inhibitors
PDE5 inhibitors were initially marketed for erectile dysfunc-

tion, but have also been used in the management of pulmo-

nary hypertension. There have been several reports that have

linked its use temporally to the development of nonarteritic

ischemic optic neuropathy, though the associationmay not be

causal.143 PDE5 inhibitors are known to have some cross-

reactivity with other PDEs, including those found in the pho-

toreceptors (PDE6). There may be demonstrable alterations to

temporal resolution, and patients taking this medication may

occasionally notice disturbances of color vision which are

typically described as a bluish tinge (cyanopsia).196 Minor, but

statistically significant, disturbances in color discrimination

at the desaturated D-15 were noted by Luu and colleagues in

10 of 14 subjects (71%) 1 hour after the ingestion of 200 mg of

sildenafil, and the time course for the effect appears to be

similar to that for ERG changes.112 Cordell and colleagues

found no evidence of disturbed color discrimination at the F-M

100-Hue in 57 patients treated with 5 mg of tadalafil or in 49

patients treated with 50 mg of sildenafil over a period of

6 months.35

5.5.2. Chloroquine or hydroxychloroquine
Neubauer and colleagues compared clinical assessment,

electrooculography, and color vision assessment (using a

computerized test of color discrimination) in 93 patients on

chloroquine or hydroxychloroquine therapy for rheumato-

logical disease over an average of 2.6 years.145 Their analysis

suggests a preferential impairment of tritan discrimination

that occurred in 22 of 37 patients (59%) with mild retinopathy

and 100% of patients with advanced retinopathy with a classic

bull’s eye appearance. The calculated sensitivity and speci-

ficity of S-mechanism deficiency for predicting retinopathy

are 63% and 67%, respectively. Color vision assessment is

currently not recommended as a means of screening for

hydroxychloroquine retinopathy, because other tests such as

perimetry, multifocal ERGs, and spectral domain optical

coherence tomography provide superior screening efficacy.23

5.5.3. Ethambutol
Of all infectious agents, deaths from tuberculosis are currently

only exceeded by HIV/AIDS, and ethambutol remains a

mainstay of multidrug therapy for tuberculosis.225 In a

detailed study of 6 patients with vision loss from ethambutol,

Nasemann and colleagues found evidence of global loss of

color discrimination at the F-M 100-Hue, with a preponder-

ance of M-Lmechanism errors.139 In a short-term longitudinal

study of patients undergoing quadruple anti-tuberculosis

therapy with rifampacin, isoniazid, ethambutol, and pyr-

azinamide for 2 months followed by 4 months of dual therapy

(rifampacin and isoniazid), Cruz and colleagues found that 30

of 64 patients (47%) failed the desaturated F-MD-15 at 1month

(all had passed at baseline).37 Of these, 20 (31%) patients had

nonspecific deficiency, and 10 (16%) patients had S-
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mechanism deficiency. All patients reverted to normal at

1 month after cessation of ethambutol.

5.5.4. Digoxin
This Naþ-Kþ pump blocker is primarily used in the treatment

of atrial fibrillation and is notorious for its narrow therapeutic

window.218 The medication may cause nonspecific blurring of

vision but may also cause chromatopsia (typically yellow in

hue, “xanthopsia”) and disturbance of color discrimination. In

a survey of 30 patients on digoxin (27 within the therapeutic

window and 3 with slightly elevated levels, but without signs

of toxicity), 8 (26.7%) patients demonstrated tritan F-M D-15

arrangements and a further 9 (30%) demonstrated nonspecific

loss of discrimination.106

5.6. Environmental dyschromatopsia

5.6.1. Toxins
Although an association between exposure to organic sol-

vents and S-mechanism color vision deficiency has been re-

ported in numerous studies, meta-analysis of 15 studies

suggests only a trend toward an association between the level

of occupational exposure and color discrimination (i.e., it does

not attain statistical significance).151 Several reasons have

been proposed to account for this lack of dose-effect correla-

tion, including variation in themethods of assessing exposure

to organic solvents, the inclusion of studies with subjects

having only subthreshold exposures (14 of 15 studies) and the

use of insensitive measures of color discrimination.151 Other

industrial chemicals may also cause color vision deficiency

(most commonly an acquired S-mechanism deficiency), and

their effects have been reviewed by Iregren and colleagues.79

5.6.2. Hypoxia
Sustained exposure to hypoxic environments (e.g., high alti-

tudes) induces a reversible acquired color vision deficiency

which predominantly affects S-mechanism discrimina-

tion.227 For acute exposures, S-mechanism and M-L mecha-

nism discrimination losses may be similar.214 Corresponding

reductions in S-cone derived a-wave amplitudes on electro-

retinography have also been observed.176 Hypoxic states (i.e.,

through systemic disease in the context of normoxic or

hyperoxic environments) may similarly cause color vision

deficiency.231
6. Conclusion

Acquired color vision deficiency is a common condition and,

though its precise prevalence is unknown, the available evi-

dence suggests it is more common than congenital color

vision deficiency in populations aged 40 years and more.178

Although a wide array of diseases may affect color vision,

acquired color vision deficiency results in stereotypical

changes whichmay be classified.212 Because of the physiology

of color processing,193 diseases affecting M-L mechanism

discrimination also tend to cause loss of spatial discrimina-

tion. S-mechanism color deficiency, in contrast, may occur

independent of losses in visual acuity. There is a predilection

for acquired color vision deficiency to cause S-mechanism
deficiency, and several mechanisms may be responsible for

this phenomenon.212 These include an inherent vulnerability

of the S-mechanism, a paucity of physiologic reserves, and the

deployment of testing conditions which tilt the field against

the S-mechanism. Although certain ocular conditions may

cause a preponderance of M-L mechanism or S-mechanism

defects, the effects are not invariable, and mixed defects are

common. With the advent of new treatmentsdespecially

gene therapy for inherited retinal disordersdthere has been

renewed interest in the assessment of acquired color vision

deficiency. Improvements in imaging techniques, in our un-

derstanding of the physiology of color processing, and in the

pathophysiology of disease will provide further insights into

acquired color vision deficiency.
7. Method of literature search

PubMed was used to search for articles: no limits were placed

on date, or language, of publication. Search terms included

“colo(u)r vision” and “colo(u)r vision deficiency.” The former

was combined with the search terms corresponding to the

headings and subheadings in the section on color vision

deficiency in particular disease states (e.g., “colo(u)r vision

cone dystrophy,” “colo(u)r vision retinitis pigmentosa”). The

search was expanded using the “related articles” function in

PubMed. The indices of the proceedings of the International

Research Group on Colour Vision Deficiencies (from 1984 to

1997 inclusive) were also scrutinized via Springerlink (http://

link.springer.com). Secondary sources were identified from

the articles identified in the primary search. In addition, a

personal archive of references was used.
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